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CHAPTER 11

c0055 A Sonic hedgehog (Shh) response deficit in
trisomic cells may be a common denominator

for multiple features of Down syndrome

Duane G. Currier, Renita C. Polk and Roger H. Reeves*

Department of Physiology, The McKusick-Nathans Institute for Genetic Medicine,
Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Abstract: The hedgehog (HH) family of growth factors is involved in many aspects of growth and
development, from the establishment of left–right axes at gastrulation to the patterning and formation of
multiple structures in essentially every tissue and the maintenance and regulation of stem cell
populations in adults. Sonic hedgehog (Shh) in particular acts as a mitogen, regulating proliferation of
target cells, a growth factor that triggers differentiation in target populations, and a morphogen causing
cells to respond differently based on their positions along a spatial and temporal concentration gradient.
Given its very broad range of effects in development, it is not surprising that many of the structures
affected by a disruption in Shh signaling are also affected in Down syndrome (DS). However, recent
studies have shown that trisomic cerebellar granule cell precursors have a deficit, compared to their
euploid counterparts, in their response to the mitogenic effects of Shh. This deficit substantially
contributes to the hypocellular cerebellum in mouse models that parallels the human DS phenotype and
can be corrected in early development by a single exposure to a small-molecule agonist of the Shh pathway.

Here, we consider how an attenuated Shh response might affect several aspects of development to
produce multiple phenotypic outcomes observed in DS.

Keywords: SHH signaling; Down syndrome; brain development; common denominators of Down
syndrome; neural crest; cerebellum.

s0005 Therapeutic approaches in Down syndrome

p0100 Trisomy for human chromosome 21 (Hsa21)
results in Down syndrome (DS) which is among
the most complex genetic perturbations compati-

ble with survival past term. While trisomy affects
development of every tissue, reduced cognitive
ability in DS is among the most limiting features,
and DS is one of the leading genetic causes of
intellectual disability. The development and char-
acterization of mouse models of DS, especially
Ts65Dn, demonstrates that orthologous gene dos-
age effects produce comparable outcomes for
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some phenotypes, including cognitive impairment
(Fernandez et al., 2007; Hanson et al., 2007;
Kleschevnikov et al., 2004; Reeves et al., 1995).
As detailed elsewhere in this volume (de la Torre
and Dierssen, 2012; Fillat and Altafaj, 2012;
MobleyAu4 , in this volume), several drugs with the
potential to ameliorate cognitive deficits in DS
are making their way to clinical trials.

p0105 Studies of mice have played an important role
in understanding the brain regions that are espe-
cially affected in DS (Lott and Dierssen, 2010).
Functional outcomes as well as anatomical and
physiological studies demonstrate three regions
among those with the largest effects: prefrontal
cortex, a contributor to executive function; hip-
pocampus, a crucial site for learning and mem-
ory; and cerebellum, which shows a dramatic
reduction in size and cellularity. It is notable that
initial studies of learning and memory deficits in
trisomic mice, which showed affects on hippo-
campus, informed the development of the first
cognitive tests focused on deficits associated
with the hippocampus in DS (Pennington et al.,
2003; Reeves et al., 1995). That effort has been
carried forward, resulting recently in the Arizona
Cognitive Test Battery for DS (ACTB) (Edgin
et al., 2010). The ACTB is a sensitive set of tests
focused on brain regions affected in DS (see
EdgiAu5 n et al., 2012). Clinical trials with the goal
of ameliorating cognitive deficits in DS have
begun; many proposed efforts with this goal will
utilize the ACTB tests as part of their
assessments (for updated information, see http://
clinicaltrials.gov/).

p0110 Currently, approaches to therapy in DS may
be thought of in three very broad areas. First,
people with DS frequently exhibit early onset of
geriatric diseases. The histopathology of
Alzheimer disease (AD) is present in all persons
with DS along with the sequellae of the disease,
including dementia in a substantial fraction of
the DS population, and is certainly related at
least in part to overexpression of the amyloid

precursor protein gene, APP (Salehi et al.,
2006). Age-related loss of afferents to the hippo-
campus from the locus coeruleus of neurons that
use norepinephrine as a neurotransmitter and
degeneration of basal forebrain cholinergic
neurons are also hallmarks of DS shared with
AD (Salehi et al., 2006, 2009).

p0115A second general area for DS therapy
involves correction of perturbed neuronal func-
tion in older children or adults. For example,
restoration of an imbalance of inhibitory and
excitatory inputs to the hippocampus forms the
basis for major clinical trials going forward
(Braudeau et al., 2011; Fernandez et al., 2007).
This approach is based on the observation that
downregulation of the GABAergic inhibitory
PV neurons in Ts65Dn mice restores the balance
of inhibitory:excitatory inputs and normalizes
performance in hippocampal-based tasks such
as the Novel Object Recognition Task and
the Morris Water Maze (see Reeves and Gar-
ner, 2007; Rueda et al., 2008; Salehi et al.,
2007). Several other efforts that have been
carried out in trisomic mice and in some
cases piloted in human studies look at a variety
of hippocampal pathways (Lott and Dierssen,
2010).

p0120A third potential area for therapy that is
further downstream in the drug development
pipeline addresses the initial basis of cognitive
deficits, that is, antenatal brain development
(Haydar and Reeves, 2012). Anatomical and
morphological changes in the developing triso-
mic brain are being studied in detail in animal
models, while imaging techniques are increas-
ingly providing information about development
of the DS brain. One approach of this type has
been shown to normalize early deficits in
postnatal development of the cerebellum, which
is markedly hypocellular in DS and mouse
models (Roper et al., 2006b); this example
involves Shh signaling and is considered in detail
here.
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s0010 Shh signaling

s0015 Canonical Shh pathway

p0125 The Shh ligand is produced in cells distinct and
often separated from those receiving the signal.
The precursor protein is substantially modified
by a cleavage that involves addition of a choles-
terol moiety followed by palmitoylation (Mann
and Beachy, 2004). Fully processed Shh (Shh-Np)
is secreted from the producing cell and likely
assembles into multimers (Zeng et al., 2001).
Extracellular Shh-Np is sensed by the receiving
cell via interactions with the 12-pass transmem-
brane protein, Patched (Ptch) (Marigo et al.,
1996; Stone et al., 1996). In the pathway-off state
(Fig. 1a), Ptch catalyzes the production of an
unidentified repressor of Smoothened (Smo), a
seven-pass transmembrane protein with possible
G-protein-coupled receptor activity (Ayers and
Therond, 2010; Chen et al., 2002). When Smo is
repressed (pathway-off), the transcription factors
Gli2 and Gli3 are targeted to the proteasome for
processing to produce their transcriptional repres-
sor forms (Gli2R, Gli3R) (Asai et al., 2006; Wang
et al., 2000).

p0130Another pathway element, Suppressor of Fused
(SuFu), is found in both the cytoplasm and the
nucleus and interacts with Gli1 and Gli2 proteins
to further suppress pathway activity (Barnfield
et al., 2005; Kogerman et al., 1999). SuFu/Gli
complexes are exported from the nucleus and teth-
ered in a SuFu-dependent manner in the cytoplasm.
Further, SuFu inhibits Gli-mediated transcriptional
activation by binding and inhibiting DNA-bound
Gli1 or Gli2. The pathway is activated when Shh
binds to Ptch, inhibiting the catalytic activity of
the latter, thereby reversing the repression on
Smo (Fig. 1b). This results in degradation of SuFu
and Gli phosphorylation to produce activator Gli
proteins that move to the nucleus and promote
transcription (Chen et al., 2002; Humke et al.,
2010; Yue et al., 2009; Zhang et al., 2004).

s0020Noncanonical Shh signaling

p0135Jenkins (2009) broadly defines several mechanisms
for pathway activation outside of the canonical
derepression of Gli transcription factors follow-
ing Shh binding to Ptch. For example, Ptch can
interact directly with CyclinB1 to affect cell cycle
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Fig. 1.f0005 The Shh pathway. (a) In the pathway-off state, Patched (Ptch) catalytically inhibits Smoothened (Smo) activity through an
unidentified intermediate. Suppressor of Fused (SuFu) mediates cleavage of Gli2 and Gli3 into their repressor forms, lacking
transactivation domains. The Gli2/3 repressors translocate to the nucleus where they repress transcription by binding target gene
promoter sequences. (b) Shh binding to Ptch inhibits its catalytic repression of Smo, resulting in activation of Smo and
degradation of SuFu. In the absence of SuFu, Gli2/3 are phosphorylated to become the activator forms. Gli2/3 activators
translocate to the nucleus where they promote transcription by recruiting other transcriptional activators to target gene
promoters. (For color version of this figure, the reader is referred to the Web version of this chapter.)
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progression (Barnes et al., 2001) and can initiate
apoptosis in neuroepithelial cells until it is blocked
by Shh binding (Thibert et al., 2003). Although
Ptch is the primary receptor for Shh, several
other membrane bound proteins compete for Shh
and are capable of enhancing or inhibiting path-
way activity. Cell Adhesion Molecule-Related/
Downregulated by Oncogenes (CDO) and Brother
of CDO (BOC) both bind Shh though Fn3
domains. Growth Arrest Specific 1 (Gas1) (Mar-
tinelli and Fan, 2007) and Hedgehog-Interacting
Protein (Hhip) (Bosanac et al., 2009) interact with
Shh, but not throughFn3 domains.Of these, expres-
sion of CDO, BOC, or Gas1 increases Shh pathway
activity, while Hhip negatively regulates the path-
way (Beachy et al., 2010). SCUBE2, a secreted
SCUBE protein family member, interacts with both
Shh and Ptch and enhances Shh signaling (Tsai
et al., 2009). The precise relationships between
these receptor molecules and the Shh/Ptch interac-
tion have yet to be described in detail.

p0140 The Gli transcription factors can also be
regulated outside of the canonical Shh pathway.
Borycki et al. demonstrated that Wnt1 and Wnt4
can induceGli2 expression and repressGli3 expres-
sion in a quail segmental plate mesoderm explant
culture system (Borycki et al., 2000). Others have
suggested that Gli1 protein may be regulated inde-
pendently of Shh through theMAPKpathway (Seto
et al., 2009). This would raise some interesting
possibilities for activating Gli-regulated genes in
the absence of Shh as well as for synergizing with
Shh to superactivate the pathway.

p0145 While precise definitions of noncanonical path-
ways are lacking, results of multiple perturbations
of the Shh pathway support the involvement of
many of its components in multiple signaling par-
adigms. Indeed, it would be surprising if the enor-
mous range of Shh effects as mitogen and
morphogen in essentially every tissue could be
reduced to one relatively simple pathway with
three transcription factor effectors. Elaboration
of these additional pathways for Shh signaling

and their roles in specific processes will be a rich
source for potential targets of therapeutic
molecules that are fine-tuned to specific effects
that are perturbed in disease states.

s0025Phenotypes of Shh pathway mutants

p0150Hedgehog signaling is a fundamental pathway
involved in many aspects of prenatal develop-
ment. Varied roles have been described from a
number of studies in model organisms using con-
stitutive and targeted gene “knockouts” in mice
and chick/quail chimeras (Table 1). The first
report of a constitutive Shh knockout demonstra-
ted cephalic neural tube defects as early as day
8.5 of gestation (E8.5) that becomes more severe
a day later, resulting in a markedly hypomorphic
central nervous system (Chiang et al., 1996).
Mutant embryos die around the time of birth
and exhibit defects in development of heart, lung,
kidney, and foregut in addition to the forming
CNS. Many of the same phenotypes have been
observed in embryos lacking Smo, an intermedi-
ate member of the Shh pathway that functions
to positively regulate pathway activation, and
embryos lacking Dispatched A (mDispA), a fac-
tor that is essential for efficient Shh release from
cells producing it. Embryos lacking Smo or
mDispA have somewhat more severe phenotypes
resembling Shh and Indian hedgehog (Ihh) dou-
ble knockout. mDispA and Smo are required for
Ihh as well as for Shh signaling.

p0155Similar results are seen after exposure to an
inhibitor of Shh signaling, cyclopamine, the effec-
tive agent in Veratrum californicum that induces
cyclopia in fetuses of pregnant sheep. In addition
to cyclopia, malformations of the nose and skull,
notably the premaxilla, are also present (Binns
et al., 1963). From these studies, it is clear that
successful embryo development requires restric-
tion of Shh activation to specific levels in both a
temporal and spatial manner.
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Table 1.t0005 Phenotypes caused by alterations and interruptions in Shh signaling that may relate to deficits in DS

Perturbation
Affected
system Phenotypes Age Notes References

Shh�/� Cardiac Pharyngeal arch artery defects,
ASD, VSD, Tetralogy of Fallot-
like, persistent truncus arteriosus
(PTA)

E10.5–15.5 Hildreth et al.
(2009) and
Smoak et al.
(2005)

Brain Midline fusion of anterior lips of
cephalic neural plate, incomplete
separation of primitive optic
vesiclesa

E8.25 Abdelwahid
et al. (2002)

Loss of ventral structures, growth
deficit in forebrain

E11.5 Chiang et al.
(1996)

Branchial
arches

Reduced mandibular componenta E9.5 Abdelwahid
et al. (2002)

Craniofacial
bones

Trace E15.5 Chiang et al.
(1996)

Nkx2.5Cre/þ,
Shhflox/�

Cardiac Pharyngeal arch artery defects,
PTA, AVSD

E10.5 Shh ablated in Nkx2.5-
expressing cells

Goddeeris
et al. (2007)

Mef2c-AHF-
Cre, Smoflox/�

Cardiac PTA, ASD, VSD, AVSD,
rounded and short AV valves

E14.5–18.5 Smo ablated in anterior
heart field

Goddeeris
et al. (2008)

Wnt1-Cre,
Smoflox/�

Cardiac PTA E10.5 Smo ablated in neural
crest

Goddeeris
et al. (2007)

SmoGli1-

CreERT2
Cardiac ASD and AVSD E13.5 Floxed Smo allele under

the control of inducible
Gli1:Cre

Hoffmann
et al. (2009)

ShhNkx2.1-Cre Cardiac ASD E13.5 Shh ablated in Nkx2.1-
expressing cells

Hoffmann
et al. (2009)

Shhc/Shhn,
Pax2-Cre

Cerebellum Absence of EGL, disorganized
PL, fewer lobes

P5 Shh ablated in Pax2
expressing precursors to
Purkinje cells

Lewis et al.
(2004)

Shhc/Shhn,
L7-Cre

Cerebellum Absence of EGL, disorganized
PL, fewer lobes

P5 Shh ablated in precursors
to Purkinje cells

Lewis et al.
(2004)

SuFu�/loxP,
Hoxb.7-Cre

Cerebellum Hypoplastic vermis, lack of
foliation, disorganized cell layers

P21 SuFu ablated in
precursors to CGNPs

Kim et al.
(2011)

5E1
Hybridoma

Neural crest/
branchial
arches

Hypomorphic branchial arches,
developmental delay

Stages
9–11 þ24h

Hybridoma cells injected
lateral mesenchyme of
developing chick

Ahlgren and
Bronner-
Fraser (1999)

Kif3afl/fl,
hGFAP-Cre

Cerebellum Atrophic cerebellum, fused folia,
thicker PL

P25 Kif3a ablated in GFAP
expressing CGNPS,
Bergman glia, and Radial
glia

Spassky et al.
(2008)

Ptc�/� Embryo Failure of neural tube closure,
lethality

E10.5 Constitutive Ptc knockout Goodrich et al.
(1997)

Gli2flox/flox,
En1-Cre

Cerebellum Reduced foliation, hypocellular
EGL

P5/P8 Gli2 is ablated by E9.0 in
En1-expressing cells
which give rise to the
cerebellum

Blaess et al.
(2006)

aSimilar phenotypes were seen in Smo �/� and mDispA �/� knockout mice.
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s0030 Shh response deficit as a “common denominator”
of DS phenotypes

s0035 Trisomy and Shh in cerebellar development

p0160 The first direct demonstration of Shh response
perturbation due to trisomy came from analysis
of cerebellar development in the Ts65Dn “Down
syndrome” mouse (Baxter et al., 2000). Mouse
models play a critical role in the study of gene
dosage mechanisms that produce the features of
DS as reviewed in detail in this volume and else-
where (Das and Reeves, 2011; de la Torre and
Dierssen, 2012; Herault et al., 2012; Mobley, in
this volume; Moore and Roper, 2007; O’Doherty
et al., 2005). Ts65Dn mice, like people with tri-
somy 21, have a smaller cerebellum and show
specific deficits of Purkinje cells and of the gran-
ule cell neurons that make up the internal granule
layer (IGL) of the cerebellum. Further, the
reduced density of GC in the IGL of Ts65Dn
mice was shown to occur in people with DS, as
well (Baxter et al., 2000).

p0165 The IGL is not present at birth in mice nor is it
fully formed in newborn humans. Rather, granule
cell precursors (GCPs) form the external germi-
nal layer on the surface layer of the cerebellum.
It forms over the first 3weeks of life in mice
(2–3years in human beings). Purkinje cells pro-
duce Shh which stimulates GCPs to divide and
migrate inward to form the IGL (Dahmane and
Ruiz i Altaba, 1999; Wallace, 1999; Wechsler-
Reya and Scott, 1999). The granule cell neuron
deficit in Ts65Dn is already detectable from 1
week after birth (Roper et al., 2006b). On the
day of birth, the number of GCPs in the external
germinal layer is the same in Ts65Dn and euploid
mice; however, the frequency of mitosis is signifi-
cantly reduced in Ts65Dn. This reduced mitotic
rate is a major contributor to the deficit in granule
cell generation in trisomic mice (Roper et al.,
2006b) and in DS (Guidi et al., 2011). Similarly,
deleting a floxed Shh gene in late gestation
by driving Cre expression with either the Pax2
or L7 promoters results in reduced cerebellar

volume, hypocellularity, and disorganization of
GCPs in the EGL (Table 1; Lewis et al., 2004).

p0170When GCPs were isolated from trisomic and
euploid cerebella and cultured in the presence of
increasing amounts of Shh, two important things
were observed (Roper et al., 2006b). First, triso-
mic GCP responded less to the mitogenic effects
of Shh at every concentration (Fig. 2a). Second,
the trisomic cells did exhibit a dosage response,
suggesting that stimulation of Shh signaling
in vivo might overcome some of the mitogenic
deficit in trisomic cells that was observed in vitro.
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This was indeed the case. Trisomic mice that
received a single dose of SAG on the day of birth
had the same number of GCPs and of mitotic
GCPs 1week later, whereas vehicle-treated triso-
mic mice already showed a significant deficit of
these cells (Fig. 2b).

s0040 The SHH hypothesis for DS

p0175 These results raise the question, “is the attenuated
response to Shh in trisomic mice restricted to GCP,
or do all Shh-responsive cells in a trisomic individ-
ual show a reduced reaction to Shh stimulation?”
If the latter is the case, could stimulation of
those developing populations at the appropriate
stages of development represent a common
approach to ameliorate diverse structural deficits
in a wide range of cells and tissues that are affected
to produce the DS phenotype? Based on the dem-
onstration that trisomy results in a reduced
response to the mitogenic effects of Shh in cerebel-
lum, we consider here the possible effects of
attenuated Shh response in three additional sys-
tems that are frequently or always affected during
development in DS: craniofacial skeleton, heart,
and the enteric nervous system. Observations of
parallel effects of Shh disruption and of trisomy
suggest that this mechanism may contribute to
multiple DS phenotypes. Effects in development
of the face and enteric nervous system further sug-
gest that Shh signaling effects may impinge on neu-
ral crest cells (NCCs) which contribute to each of
these structures.

s0045 Craniofacial development

p0180 The appearance of the DS face is very character-
istic of this syndrome and is due substantially to
hypoplasia of the midface skeleton. This is reflected
in the Ts65Dn mouse and other models in an
absolute correspondence between affected bones
across the two species (Richtsmeier et al., 2000,
2002). In particular, the midface and mandible

are significantly smaller and dysmorphic due to tri-
somy. These bones arise from an embryonic precur-
sor, Meckel’s cartilage, which is itself a product of
the NCCs that contribute substantially to the first
pharyngeal arch (PA1). To identify the earliest
changes that lead to midface hypoplasia, we studied
the formation of PA1 in Ts65Dn mice and their
euploid littermates at embryonic day 9.5 (E9.5) in
crosses with mice that express lacZ under control
of the Wnt1 promoter, marking NCCs (Roper
et al., 2009).

p0185Development of both trisomic and euploid
embryos was highly variable at E9.5 with somite
numbers ranging from 7 to 43, but no difference in
developmental stage was observed between triso-
mic and euploid embryos (Roper et al., 2006a).
When embryos at the 20–24 somite stage were con-
sidered, the trisomic PA1 was smaller, contained
fewer neural crest-derived cells and these cells
had a lower mitotic index than did their euploid
counterparts. The number of migrating NCCs (lacZ
þcells between the neural tube and PA1) was not
significantly different at this stage; however, fewer
migratingNCCswere present in slightly lessmature,
17–19 somite embryos (Roper et al., 2009). Earlier
experiments in both chick and mice show that Shh
from endoderm of the ventral foregut is required
to maintain migrating NCCs and to promote prolif-
eration in PA1 (Ahlgren and Bronner-Fraser, 1999;
Brito et al., 2006; Jeong et al., 2004). Note that if tri-
somic NCCs, like GCP, respond less to Shh than
their euploid counterparts, some of these migrating
cells might differentiate since they would “see” less
Shh signal at the same concentration.

p0190We then dissected the neural tubes from triso-
mic or euploid embryos and cultured them
ex vivo to determine whether the delamination of
NCCs from the tube is affected. Twenty-four hours
after being placed in culture, Ts65Dn explants
showed fewer cells migrating from the neural
tube and those trisomic cells that did delaminate
migrated for a shorter distance. Finally, we isolated
cells from PA1 of euploid or trisomic embryos and
cultured them to measure proliferation. Trisomic
cells showed lower proliferation than did euploid.
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However, addition of Shh to the cultures increased
cell division, bringing the rate in trisomic cells to
that seen in euploid cultures (Roper et al., 2006a).

p0195 Thus, the earliest trisomy-related deficits lead-
ing to midface skeletal hypoplasia arise from
reduced delamination and migration of NCCs
and from reduced proliferation of these cells in
PA1, which provides the anlage for the cartilagi-
nous model from which the mandible and mid-
facial bones will form. The known effects of Shh
as well as our observations are consistent with
the hypothesis that an important contribution to
this deficit is the reduced responsiveness to Shh
in cranial neural crest from trisomic mice, with
direct phenotypic consequences.

s0050 Trisomy and Shh in cardiovascular development

p0200 Nearly half of all children born with DS have a con-
genital heart defect (CHD) (Ferencz et al., 1989).
Atrioventricular septal defects (AVSDs) are the
most common followed by ventricular septal defects
(VSDs) and atrial septal defects (ASDs). Several
mouse models of DS show similar patterns of
CHD, indicating conservation of the effects of triso-
mic genes during mammalian heart development
(Liu et al., 2011; O’Doherty et al., 2005; Williams
et al., 2008). Nearly half of Tc1 transchromosomic
mice, which carry a freely segregating copy of
Hsa21, present with heart defects. VSDs are most
common in trisomic mice, while AVSD and patent
truncus arteriousus (PTA) are also observed.
About 15% of newborn Ts65Dn mice have cardiac
defects, including ASD, VSD, PTA, and various
errors of branching of the pulmonary and outflow
tracts. Mice that carry a duplication of the Hsa21
conserved synteny region on mouse chromosome
16 (Mmu16) show cardiovascular defects reminis-
cent of those seen in individuals with DS. They dis-
play ASD, VSD, and a tetralogy of Fallot-like
phenotype (Li et al., 2007). Mice that are trisomic
for all regions conserved with Hsa21 on mouse
chromosomes 10, 16, and 17 have cardiovascular
defects at a similar frequency (Yu et al., 2010).

p0205Shh is secreted from cells in both the pulmo-
nary endoderm, where it is required for proper
atrial septation, and in the pharyngeal endoderm,
where it is necessary for proper outflow tract
septation (Goddeeris et al., 2008). Shh signaling
marks cells within the second heart field (SHF)
as progenitors of the atrial septum and outflow
tract. Labeling of hedgehog-responsive cells early
in heart development demonstrates that those
cells migrate from the SHF and contribute to the
primary atrial septum, dorsal mesenchymal pro-
trusion (DMP), endocardial cushions, and pulmo-
nary trunk (Hoffmann et al., 2009). The atrial
septum, DMP, and endocardial cushions all com-
bine to form the mesenchymal complex of the
atrioventricular septum (Snarr et al., 2007). The
appearance of this complex is necessary to com-
plete AV septation and to anchor AV valves.

p0210NCCs contribute to heart development by
migrating into the outflow tract of the heart, con-
tributing to septation and alignment. Smo is neces-
sary for Shh pathway activation, and the loss of
this gene in NCCs resulted in errors in septation
and alignment of the aorta and pulmonary trunk,
as well as defects in pharyngeal arch arteries
(Goddeeris et al., 2008). An Shh response deficit
could thus contribute to heart defects through
direct effects in SHF, or because of an impaired
response of trisomic neural crest. As noted, several
steps in NCC delamination, migration, and prolif-
eration require Shh signaling.

p0215In support of this idea, several mouse models
with impaired Shh signaling also display errors
in septation (Table 1). A knockout of Shh�/� in
which exon 2 and its flanking introns are removed
displays AVSD and other structural defects
(Hildreth et al., 2009; Smoak et al., 2005). Similarly,
when Shh signaling is blocked by cyclopamine at
HH stage 14 chick embryos, they exhibit PTA,
VSD, and pulmonary atresia secondary to reduced
proliferation in the SHF (Dyer and Kirby, 2009).
Similar outcomes occur when other components of
the pathway are altered. Conditional knockouts
of Smo and Shh result in AVSD and PTA in mouse
embryos. Deletion of a floxed Shh allele in all
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cells expressing either Nkx2.5 or Gli1 results in
AVSD (Goddeeris et al., 2007; Hoffmann et al.,
2009). Thus Shh signaling mutants present AVSDs,
VSDs, and ASDs, structural defects that are com-
mon in DS (Ferencz et al., 1989).

p0220 Septal defects were attributed primarily to
errors in the endocardial cushions for many years,
but evidence has emerged recently that points to a
critical role for DMP as a contributing factor, espe-
cially to AVSD and secundum ASD (Goddeeris
et al., 2008; Hoffmann et al., 2009). In this light,
it is relevant that Shh signaling is not required for
endocardial cushion contributions to septation but
is necessary for proper contributions to DMP from
the SHF. When Shh signalingAu6 is disrupted in DMP
progenitors or the SHF o, the DMP is hypoplastic
or does not form and an AVSD results (Goddeeris
et al., 2008; Hoffmann et al., 2009). Hypoplastic
DMP has also been described in human fetuses
with DS and in mice trisomic for all of Mmu16
(Blom et al., 2003; Snarr et al., 2007; Webb
et al., 1999). Thus there is an important role for
Shh signaling in formation of the DMP, and for
DMP involvement in AVSDs; DS is a major risk
factor for AVSD (Ferencz et al., 1989). Overall,
there are substantial similarities between heart
phenotypes caused by trisomy and those seen in
Shh signaling mutants. These results do not prove
causation but they are consistent with the effects
expected from reduced response to Shh signaling
in the developing heart.

s0055 Enteric nervous system

p0225 The small and large intestines are innervated
by vagal NCCs that migrate along the primitive
gut from the rostral toward the caudal end in
response to glial derived neurotrophic factor
(GDNF) (Young et al., 2001). In humans, these
enteric neuron precursors (ENPs) colonize the
gut beginning week 7 of gestation, with the primi-
tive enteric ganglia reaching the rectum in week
12 (Kenny et al., 2010). Failure of the ENPs to
reach the caudal end of the colon results in a

condition known as aganglionic megacolon, or
Hirschsprung’s disease (HSCR) (Kenny et al.,
2010). Though still rare, the incidence of HSCR
in conjunction with DS is significantly increased
over the rate in the population at large (Arnold
et al., 2009). Mutations in the mouse Ret gene, a
receptor tyrosine kinase that is activated by
GDNF, cause NCCs colonizing the gut to migrate
less efficiently and these mutants phenocopy
HSCR (Asai et al., 2006). Human RET gene
mutations contribute to susceptibility to the
development of HSCR in people (Amiel et al.,
2008; Angrist et al., 1995).

p0230Shh is expressed by epithelial cells on the inner
membrane of the gut and signals via BMP4 to
inhibit differentiation of ENPs that are located in
the central mesenchyme but are not close to the
(outer) surface mesenchyme (Sukegawa et al.,
2000). Inhibition of ENP differentiation could
result in HSCR and, given the increased incidence
in DS, it appears plausible that dosage-sensitive
genes located on Hsa21 may contribute to the
aganglionic phenotype. Decreased responsiveness
to Shh could result in the expansion of the pro-
differentiation environment to a point deeper in
the gut mesenchyme than normal. Early differenti-
ation of these ENPs could then deplete the migra-
tory pool of cells before the entire length of colon
has been colonized.

s0060Hsa21 genes and Shh signaling

p0235None of the genes encoding canonical Shh signal-
ing pathway components are encoded on Hsa21.
However, upregulation of Ptch (resulting in
downregulation of the SHH pathway) has been
reported in Ts65Dn mice for a specific, small
group of stem cells in the subventricular zone
(SVZ), the origin of granule cells in the dentate
gyrus (Trazzi et al., 2011). In cultured neuro-
spheres developed from the SVZ region, a
C-terminal fragment of the APP protein, AICD,
can contribute to the upregulation of Ptch tran-
scription (Trazzi et al., 2011). Since the APP gene
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is found on Hsa21 and thus is chronically
upregulated in DS (and also in Ts65Dn mice), this
provides a possible explanation for the attenuated
mitogenic response to Shh by trisomic cells. At
the phenotypic level, the number of cells in den-
tate gyrus is reduced by about 20% in Ts65Dn
mice compared to euploid (Insausti et al., 1998;
Lorenzi and Reeves, 2006). Drugs developed
for AD that modulate APP cleavage to reduce
C-terminal fragments might thus have an addi-
tional ameliorative benefit in DS.

p0240 Molecular pathway analysis has implicated
several additional Hsa21 genesAu7 whose expres-
sion may impinge on Shh signaling directly or
indirectly, especially on the regulation of Gli1,
2, and/or 3 (see review by Sturgeon et al.Au8 ,
2012). To date, however, there is no direct dem-
onstration of a dosage-sensitive trisomic gene
disrupting Shh signaling in the developing cere-
bellum, heart, or the cranial or vagal neural
crest. Trisomic mouse models of DS provide a
sensitized genetic background for dissection of
these mechanisms.

s0065 Discussion

p0245 Trisomy for Hsa21 results in increased dosage for
more than 300 genes, and numerous studies
of gene expression in DS and in animal models
suggest that most of these will be upregulated by
�50% whenever and wherever they are normally
expressed. Viewed from this perspective, the chal-
lenge of finding “cures” based on the modulation
of individual gene function is daunting. The avail-
ability of segmental trisomies in animal models
that recreate the dosage imbalances seen in
DS and the demonstration that this produces
features analogous to those in DS (Reeves
et al., 1995) have led to a productive pheno-
type-based approach to the development of ther-
apies (Reeves and Garner, 2007; Reeves et al.,
1995; Salehi et al., 2007)

p0250 The phenotype-based approach suggests the pos-
sibility that multiple effects of trisomy in different

tissues may result from perturbations in the same
developmental pathways and regulatory pro-
cesses, as we posit here for Shh. A deficit
in response to the mitogenic effects of Shh has
been demonstrated in trisomic cerebellar GCP.
Trisomic NCC-derived cells in PA1 also appear
to respond less to Shh than do their euploid
counterparts. A similar response deficit in other
trisomic cell types could affect development
of the face, heart, enteric nervous system, and
perhaps other tissues affected in DS. The cere-
bellar GCP response deficit to Shh is amenable
to amelioration through the application of a
small-molecule agonist of the Shh pathway (Chen
et al., 2002; Roper et al., 2006b). Might a similar
positive effect be possible in other cells and
tissues that develop abnormally in DS if the Shh
pathway could be stimulated to an appropriate
degree at the appropriate time and place?

p0255The Shh pathway is utilized in so many aspects
of development that suggesting it as a therapeutic
target seems highly improbable at first glance.
Development is substantially disrupted in mice
that are engineered to over- or underexpress
Shh. In some case, the effects are concentration
dependent, as when Shh acts as a morphogen to
program cell response based on temporal and
spatial gradients in anterior–posterior patterning
of the limb (Harfe et al., 2004). Indeed, delivery
of any molecule that stimulates or inhibits this
pathway would likely need to be strictly limited
in space and time to avoid deleterious side effects.

p0260However, Shh should have no effect on cells
that do not possess appropriate receptor and sig-
nal transduction pathways. We argue here that
many if not all trisomic cells that are Shh respon-
sive might show the attenuated response seen
in cerebellar GCP. To the degree that this is the
case, off-target effects would be reduced and
could possibly have a beneficial effect.

p0265The basic tenets of this model are testable in
cell and mouse model systems. While it is clear
that there is a substantial amount to learn about
Shh signaling in all situations where it occurs,
models of DS can play an important part in
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understanding these pathways. If this singlemolec-
ular mechanism does prove to be a “common
denominator” of multiple trisomic phenotypes,
there are attendant prospects that a single kind of
pharmaceutical treatment might ameliorate multi-
ple features of DS.
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ACTB Arizona Cognitive Test Battery
AD Alzheimer disease
ASD atrial septal defect
AVSD atrioventricular septal defect
DMP dorsal mesenchymal protrusion
DS Down syndrome
EGL external germinal layer of the

cerebellum
ENP enteric neuron precursors
GCP granule cell precursor
HSCR Hirschsprung’s disease
IGL internal granule layer
NCCs neural crest cells
PA1 first pharyngeal arch
PTA patent truncus arteriosusAu2

SAG Sonic agonist
SHF second heart field
Shh Sonic hedgehog
SVZ subventricular zone
VSD ventricular septal defect
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